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~~» for strict sense optimal controls, then standard methods are not
adequate to prove it. There is a similar difficult in proving
existence of optimal controls with complete observations with
singular noise coefficient, if the term "complete observations" is
taken in the strict sense that depends on the past of the Wiener
process driving the system.
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EXISTENCE OF OPTIMAL CONTROLS FOR
PARTIALLY OBSERVED DIFFUSIONS

WENDELL H. FLEMING AND ETIENNE PARDOUX

1. Introduction. In this paper we are concerned with the existence

of optimal controls for problems of the following kind. Let Xt
denote the process which we wish to control, Yt the observation
process, and Ut the control process, 0 < t < T, with T fixed
The state and observation processes are governed by stochastic

differential equations

(a) dXt b(xt’Yt’Ut)dt + O(Xt,Yt)th

(1.1)

(b) dv, = h(X,)dt + dW_.

X has values in N-dimensional IRN, Y values in ]RM, and Ut

t t
values in ?kcﬂRL. XO has given distribution ¥, and YO = 0.

In (1.1), W and W are independent standard Wiener processes, with
values in IRD,]RM respectively. The matrix ¢ is thus N X D,

The problem is to minimize a criterion of the form

T
(1.2) J = E{JOF(Xt,Ut)dt + G(XT)}.

It is customary to require that Ut be measurable with respect to

the o-algebra generated by the observations Yoo 0 ¢ s < t. We

call this the strict sense version of the problem (§6). For

several years the question of proving a general theorem about existence
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of optimal controls in the strict sense has been open. We do not
obtain such a result here. In fact, our results together with a
counterexample of Varadhan (§6) strongly suggest that, if there is
indeed a general existence theorem for strict sense optimal controls,
then standard methods are not adequate to prove it. There is a
similar difficulty in proving existence of optimal controls with
complete observations with singular noise coefficient o, if the
term "complete observations'" is taken in the strict sense that U,
depends on the past of the Wiener process driving the system.

Instead of allowing only strict-sense controls, we obtain
existence of a minimum in a wider class of controls. Roughly speaking,
this wider class is obtained as follows. Let

t
h(Xs)'dYS -

o =

t
(1.3) Z, = exp[J Jolh(xs)lzds].

0

Then wt’Yt are independent standard Wiener processes under a new

[}
probability measure P related to the original probability measure
(-]

° -
P by %% = ZTI. In the wider sense formulaiion we wish to require
merely that Ut be independent of future increments Yr - Yt for

-]
t < r and independent of the W process, with respect to P. In

§2 we give a precise formulation of this idea, in which the control
is defined as the joint probability distribution measure 7© of 1
the processes Y,U.

Our method depends on introducing a '"pathwise'" version

At = AZ’U of an unnormalized conditional distribution measure for

Xt given past values of the observation process Y and the control

process U (§3). An important fact is the continuous dependence
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of At on Y,U and the initial distribution u (Lemma 3.2). In

§4 we introduce a '"separated" control problem, equivalent to the
original problem formulated in §2. The '"state'" in the separated
problem is the measure At' In §4 we study the dynamics of At’
using a method of forward and backward partial differential equations.

Similar ideas were used in {13], for the nonlinear filter problem.

The forward equation (5.4) is linear parabolic (possibly degenerate)

with coefficients depending parametrically on observations Yt and

controls Ut' Under suitable regularity assumptions, At has a
density q(t,x), related in a simple way to a solution p(t,x) of
the forward equation via (5.6). Without the regularity assumptions,

one uses instead a weak sense version (5.4') of the forward equation.

| We also show that At satisfies the Zakai equation (5.8) of non-
linear filtering. The method of backward and forward equations
was applied to the nonlinear filter problem in [13], working

directly with the Zakai equation and its adjoint and allowing

correlations between the Wiener processes w,ﬁ driving the state and
observation equations. Howevér, technical difficulties are encountered
in adapting that method to the control problem.
In [8] another '"separated" control problem was considered.
L In that formulation the '"state'" for the separated problem corre-
sponds to the (normalized) conditional distribution measure of Xt
: 'i given past observations. Some of the results in [8] are proved under
assumptions not satisfied when Xt is a controlled, partially
observed solution to (1.l1a). Hence, the results of [8] are
" . 3 complementary to those in the present paper.
A first existence theorem asserting that there is a control

: minimizing J 1is proved in 84, when F = 0 in (1.2). When F # 0




different methods are needed. 1In §7 we assume that the coefficiento
in (1.1a) is N X N nonsingular, and use methods of the Lz-theory

j of parabolic partial differential equations.

| In [4] Christopeit proved an existence theorem for optimal

stochastic controls under partial observations. In that work, the

observation process is a deterministic function of (part of) the past
trajectory of the state process, and the optimal control is sought in
a class of feedback controls. Both our results and our methods of

proof differ significantly from his,




2. Formulation of the problem. We make the following assumptions

about the functions appearing in (1.1).

(Al) 0 is a bounded, continuous N X D matrix-valued

N+M. Moreover, o(:,y) 1is Lipschitz on 2RN with

Lipschitz constant not depending on vy EIRM.

function on IR

b(x,y,u) = b%(x,y) + bl(x,y)u, where b’,bl are
N+M

(A)

bounded, continuous functions on R

Moreover, b£(°,y) is

Lipschitz on .RN with Lipschitz constant not depending on

y €RM, for 2 = 0,1.

0

Note that in (AZ)’ b has values in ]RN, while b1

has

N X L. matrices as values.

- A ——— a2

We write CbGRN) for the space of bounded continuous real-valued

functions on .RN, and COORN) for the space of continuous func-
tions with compact support. We write C%GRN), CgGRN) for the

spaces of functions whose partial derivatives of orders < k are

g ‘ in CbGRN), COGRN) respectively. Similarly we write CgaRNﬂRM),

CSGRNJRM) if the functions are ZRM-Valued.

O am———

(A9 hecpm'mY).

. - ———

In §7 we shall assume that o is nonsingular N X N. One
} ot could also let b,o,h depend on t, with minor changes in the

results, and proofs. This would only be a generalization in §7, since

in §'s 2-6 t <can be adjoined as an additional x component.

|
| :
% ; (A,) % is a convex, compact subset of r".
[ :
f '5 Choose any T > 0 which will be fixed throughout the paper.
l :
'i We formulate the control problem on the 'canonical' sample space
Ve
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Q=QO>‘91’<Q2XQS,

where QO,QI,Q are C([O,T]ﬂRm) with m = D,N,M respectively

and

2, = L2(10,T1; 2).

The elements w = (W,X,Y,U) of  satisfy

W(t) = (W, (8),X, (9),Y, (9),U (), 0<tcsT.

We give Q QI,QZ the usual norm topology; and 93

the weak

topology, which is metrizable and separable since % is compact [2,

p. 238]. Let

whose respective elements are pairs (W,X), (Y,U). Let

_EQ(W) = c{ws, 0 <s < t}, with _gi(x), 51(Y) defined similarly.

Let

t
5%(U) = o{Vs, 0 <s < t}, Vt = J Usds.

0
The elements of these cg-algebras are subsets of QO""’QS
spectively. However, we can also regard thenm as o-algebras
subsets of Q,Ql, or QZ, with the obvious identifications.

example A € .92(X) can be identified with QO X A X Q, x f

Te-
of

For

3




‘ 7
. We shall also use the o-algebras

1 .

Gp = HM) x A(X)
2 _

g = FM x FWO)

@ = G x g - g x X F(U)
t t t t Tt ‘

We note that 3§(U) is the Borel o-algebra of QS’ and thus

.9% is the Borel o-algebra of 92.

Remark. Intuitively,by using the indefinite integral Vt instead
of Ut in defining 5?(U), we need not be concerned with changes
in Ut on subsets of [0,T] of Lebesgue measure 0. An alternative
to our formulation would be to consider quadruples (W,X,Y,V) instead
i of (W,X,Y,U), using the uniform norm on V. By (Az) the control
enters linearly in b. Hence, one can write, in the integrated form
| ! of (1.1a),

t

t 1
f bl(x,,Y)Uds = Job (X, ,Y)dV,

0

i the right side being a Riemann-Stieltjes integral. This device

was used in [9], but we use here Ut instead.

Distribution of (W,X) «conditioned on (Y,U). Let Y =Y , U=1,

be given sample paths for the observation and control processes; thus

(Y,u) € QZ. Consider equation (1l.la) with initial data wO =0,

X0 = X. Assumptions (Al), (AZ) imply the Ito conditions. There is

a solution to (1.1a) which is pathwise unique, and hence also unique

‘L oaoay
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in probability law. Let ?1’ denote the distribution measure of

U
(W,X) given (Y,U). Then Fz’u

lies in the space of probability
measures on A%%. By convergence of a sequence of probability

measures Pn to P we mean weak convergence, namely

- = 1
ngg(w,X)dPn -+ ngg(w,X)dP for all g € Cb(Q ).

Lemma 2.1. depends continuously on x,Y,U.

FY’U
X

This lemma is essentially known (cf. Stroock-Varadhan [14]).
However, for completeness we outline a proof in the Appendix.
Following the motivation described in §1, the formal

definition of admissible control is as follows.

Definition. An admissible control 7T 1is a probability measure on

(QZ,.gg) such that Y is a T, {92} Wiener process.

T
The projection (Y,U) - Y maps T onto Wiener measure.

The definition of admissible control requires, in addition, that

t
f Ugds be independent of Y., - Y, for t<r<T.
0

Let A denote the set of all admissible controls ®. Given
a distribution u for XO, each 7T € ¥ determines a joint
distribution measure P of (W,X,Y,Z) as follows. Define

™
pYoU ﬁg’u by

ol = J NPi’U(A)du(x), A€ @}r

R

We then define
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(2.1) P_(dW,dX,dY,du) = P'-Y(dw,dx)m(dy,du).

[+]
The projection of P under (W,X,Y,U) » (Y,U) is 7m. The

family of probability measures ?Y’U gives a regular conditional

distribution for (W,X). If g(W,X) is .9%-measurab1e, then

gY»U EY’U, E.  for

g(W,X) is .9€—measurable, where we write -

5Y,U 2

expectations with respect to P P.. We then have for any
&, -measurable V¥ with E lv] <=
(2.2) E 00120 = E0Vw), 7 - as,

We define P; by

(2.3) T =7

with Z as in (1.3). Since h(x) 1is bounded, P.(Q) = EN(ZT) = 1,

T
For each (Y,U), W 1is a ?Y’U—standard Wiener process, and
X satisfies the stochastic differential equation (1l.1la) ?Y’U-

[}

With respect to P_., W and Y are independent standard Wiener

a.s.

processes.

t N
Lemma 2.2. Let Wt = Yt - f h(Xs)ds. Then W,W are independent
0

standard Wiener processes under P, and the stochastic differential

equations (l.1a), (1.1b) hold P, - a.s.

r [+]
Proof. Since the pair (?) is a P -stondard Wiener process, of

dimension N + M, the Cameron-Martin-Girsanov formula and (2.3)

imply that (g) is a P -standard Wiener process. Since (1.1la)
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o
holds P,- a.s. and P, << 5

(1.1a) holds P

- a.s; while (1.1b)

me s

holds by definition of W.
We have defined as admissible control a probability
measure T belonging to the class A . Convergence of sequences
"n of admissible controls is taken in the sense of weak convergence
of probability measures. U 1is a metric space under (for instance)

the Prokhorov metric {2]}. Moreover, 3 1is a convex set.

Lemma 2.3. % is compact under weak sequential convergence.

Proof. Since every measure T € ¥ projects onto Wiener measure
under (Y,U) = Y and the second component U 1lies in the compact
(weak topology) space LZ([O,T];QQ), tightness of % follows by
standard arguments. Hence [2, p. 37] it remains only to show that
A is closed. Suppose that T T € A. We must show that Y
is a T, {.%f} Wiener process. Since T = projects onto Wiener
measure for each n, so does T, We need only verify that Yr - Yt
is independent of .9f for t < r. For this it suffices that

for any _9€-measurab1e b € Cb(Qz) and f € CbGRM)

2¢dﬁ J 2f(Yr-Yt)d".

fQZ¢f(Yr-Yt)dn . [

f f

But this holds for each LI and we pass to the limit. This proves
Lemma 2.3.

In 86 we shall consider the subclass A% of strict-sense

controls.
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3. The unnormalized conditional distribution. We wish to introduce

an unnormalized conditional distribution of Xt given controls
and observations up to t. Let us take a version of the

<]
P _-martingale Z such that ZI_ is d%—measurable for 0 <t < T.

t
Consider any f € CbGRN). By (2.2) with v = f(Xt)Zt,
2, _ Y
(3.1) B (f(X)2,0 %) = B (F(X)Z), 0<t<T, 7- a.s.

Let us rewrite (3.1) in such a way that it is defined for all
Y,U, not just 7 - a.s, and depends continuously on (Y,U). See

Lemma 3.2 below. Since h € CéGRNQRM), we can integrate

t
Ioh(xs)-dYS by parts:

Ith(Xs)'dYS = h(Xt)-Yt - It

t
. YS'Lsn(XS)ds - fOYS-Vh(XS)G(XS,YS)dWS,

0

where YS-Vh is the gradient in x of Ys°h and

1 N 32 N 5
(3'2) LS = 7 . Z- aij (X,YS)W + ‘E bi(X,YS,US)W ’
i,j=1 i7j i=1 i
with a = oo'., For fixed Y,U, -395— + Ls is the backward operator

corresponding to (1.1a). Let
(3.3)  e(s,x) = & (aY_-%h,Y_-Vh) - Y_-L_h - 3 |h|2
. ) 2 s ’ S s S 7 N

where in (3.3) (a&,8) = |£0|2 denotes the dot product in RV of

a; with &, and -+ denotes the dot product in RM. From (1.3)
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t
Zt = Zt exp Yt-h(Xt) exp [Oe(s,xs)ds

where

t t
z, - exp[-IOYS-Vh(xs)o(xs,Ys)dws ; %-Io(a(XS,YS)YS-Vh(XS),YS'Vh(XS))ds.

For fixed (Y,U) 1let us define another probability measure %Y’U

on (Ql,.?%) by

(3.4) =¥

This corresponds to a change in drift coefficient in equation (1l.1a)
v
from b to b =15b - aYg-Vh, and changes LS in (3.2) to the

operator

v
(3.5) LS = Ls - (aYS'Vh,V).

From (3.1) we then have

° t
Bz 9D = Expemr b)) ex [ etsx)as),

where the right side is now defined for all (Y,U) € QZ, not merely

T-a.s. For fixed (Y,U) the right side is a bounded linear func-

2

tional on CbORN). llence, for every (Y,U) € Q and 0 <t < T

there exists a measure AI’U on the Borel o-algebra £ZORN) such that

(3.6) <f,AZ’U> AL

t
(f(Xt)exp(Yt-h(Xt)) exp foe(s,xs)ds),




— . o

ot

13

N
for all f € CbaR ) where for anv measurec v with VGRN) < ®

<f,v> = LRNf(x)dV(x).

AL

Definition. t is the unnormalized conditional distribution

measure.

The unnormalized conditional distribution measure satisfies,

for all f € CbGRN),

Y,U ° 2

(3.7) <f,At > = En(f(Xt)Zt| S?t).

As is well-known, the (normalized) conditional distribution of Xt

satisfies, for all f € CbGRN),

Y,U
<f’At >

’U> ’

B (£(X,)| $7) = —
't

wvhere E; denotes expectation with respect to the measure P,

defined by (2.3). For fixed t, let

Y,U vY,U

t
(3.8) Vo (x) = Ex (f(Xt)exp(Yt-h(Xt))exp Joe(s,xs)dg,

vY,Uu

where Ex denotes expectation with respect to the probability

VY,U in (3.4) for initial state

measure px X0 = x. For initial

distribution u for XO’

e = [ BV,
RN
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Lemma 3.1. (a) Vo (x) 1is a continuous function of (x,Y,U)

Therefore, by (3.6), (3.8)

(3.9) <€,40°05 - <vg’u,u>

for all (v,U) € @ and f € C,®N). {
In §5 we shall see that (3.9) has a natural interpretation
in terms of solutions to forward and backward partial differential

equations.

Remark. We shall later wish to consider A:’U corresponding to

any W > 0 with uORN) < o not merely for probability measures u

on fZGRN). Given Y,U, and u, the right side of (3.9) is a

bounded, nonnegative linear functional of f, by (3.8). This

Y,U
t

restriction UGRN) = 1, in such a way that (3.9) holds.

gives an alternate way to define the measure A without the

Y,U

(b) Given f € COGRN) and a > 0, there exist

c, k > 0 (depending on f,a and bounds for |b|, |o|, |Vh]|),such

that |vg’U(x)| < c exp(-kx) for all «x e RY  and Y,U such that
Pl < a.

%Y,U
X

Proof. By Lemma A.1 (Appendix) depends continuously on

x,Y,U. Let X, X, Yn + Y, Un + U, and let (for fixed t)

t
Wn(X) = f(Xt)exp(Ynt'h(Xt))exp [oen(s,xs)ds

t
¥(X) = f(Xt)exp(Yt-h(Xt))exp Ioe(s,xs)ds,
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where e, is defined by (3.3) with Y,U replaced by Yn’Un' For
t t

any compact [ < C([O,T]ﬂRN), [ ends - [ eds as n =+ «, uniformly
0 0

on T. This is proved by the same reasoning used in the proof of

Lemma A.1. Then v, - v uniformly on [. From this we conclude
Yn’U

that Vo n(xn) > vg’u(x) as n -+ <, which proves (a).

To prove (b), U, is bounded by (A,). For [|Y]]

A
o\

Yt'h(Xt) and e(s,xs) are bounded. Hence, for some Cy»

Y,U YY,u
lvg’ (x)] < <Py (%t € spt f).
However, %Y’U -1
X
! 1
¢ v \"%
' dXt = b(t,Xt)dt + odwt,
| b=b - av_-vh, W, =W+ IOYS'vh(XS)o(XS,YS)ds
v A YY,U . o,
and Wt is a P" -Wiener process. For ||Y|| < a, b 1is bounded;
} i
‘ and o¢ 1is bounded by (Al). By standard estimates
i t
Voo IXp-xl < ey [18]] +ept, & = JOOde’
[}
, YY,U vYy,u
' Px (Xt € spt f) < Px’ (rseft » k1|x| - kz)
for some kl > 0 and k2 (|1 )] is as usual the sup norm). Using

the fact that o is bounded and an exponential martingale inequality,

i P WY
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v
UCHlell > xplx] - k) < cqexp(-k|x])

for some C3s k > 0. See for example [14, p. 87]. This proves (b).

For r > 0 let

4 =w>0 on @®M: [|ul] < 1},

T

N
where ||u}||= u@R"). We use vague convergence for sequences of

measures: Vn + V means that <f,V > » <f,v> for all f € COGRN).

The next lemma asserts continuous dependence of AY u on u,Y,U

for fixed t, provided we restrict u to _A% (see the Remark

preceding Lemma 3.1).

Y,U

Lemma 3.2. At

is a continuous function of wu,Y,U, on ,l} x Q

Proof. Let u_ = u, (Yn,Un) + (Y,U). Given f € COORN) let

YnoUn SR
vn(x) = Vg (x), v(x) = vy (x).

By (3.9) it suffices to show that

(*) ;ig <vn,un> = <y,u>,

By Lemma 3.1(a), X, * X implies vn(xn) + v(x). Hence v, >V
uniformly on compact subsets of R\. Since Yo+ ¥, Y || <a
for some a. By Lemma 3.1(b), vn(x) + 0 as |x| -+, uniformly

with respect to n. Since |[|u || < r, this implies (*) and hence

Lemma 3.2.




v admae - g .

I S A At @i e L TR -

17

4. The "separated" control problem. As in (1.2) let

T
(4.1) J(M) = E, {JOF(Xt,Ut)dt + G(XT)},
with E; the expectation with respect to the probability
measure P, in (2.3). The minimum problem is: given a distribution

measure ¥ for X find a control 1©* € 9 such that J(@% < J(m)

O’
for all T € 9.

(AS) F,G are continuous, and F > 0, G > 0. There exists

T €% such that J(7) < o,
We sometimes impose the stronger condition:

(Aé) F,G are continuous, F > 0, G > 0, and for some

positive C,m, £ > m
m - m 2
[E(x,u)| < c+[x|), 16(x)] < c1+|xIT), <|x| ,u> < =,

Since Xt satisfies the stochastic differential equation
(1.1a) with bounded coefficients b,o0, J(") < for all m € 9

provided that (Aé) holds. See [10, p. 48].

From (2.3) and the fact that Xt’Ut are nwt-measurable

o T
J(m) = Ln{f ZtF(Xt,Ut)dt + ZTG(XT)}.

0

Upon taking conditional expectations and using (3.7)

° To o el
J(M I*n{f L, (Ztlz(xt’ut” g-i)dt + I:n(Z,].(‘t(XTH 7 %)} ’
0

T
(4.2) J(m j 2{[ b (U, A Usae + <6, A0 an(y,v).

Q 0

T s T
' '.:%9*'-.?‘-1}» ‘

S ER e




In the separated problem, we regard the unnormalized

conditonal distribution measure At = AI’U as the '"state",

and (4.2) as the criterion to be minimized. Initially, AO = W,
The dynamics of the measure-valued process l\t will be described
in §5.

In our formulation, the separated control problem is
completely equivalent to the problem originally formulated in §2.
An optimal control n*  for either problem is also optimal for
the other.

In the case F = 0 we can now prove the existence of an
optimal 1. In 57 we shall prove another existence theorem, with
F # 0, using methods of partial differential equations. One
cannot, in general, reduce F # 0 to F = 0 by adding a new

state variable since linearity would then no longer hold in (AZ), §2.

Theorem 4.1. Let F = 0., There exists n* € such that

J(m*) < J(") for all T € 9.

Proof. By Lemma 2.3, 9 1is compact. It suffices to show that

J(n) = [ <G'A¥’U>d"(Y,U)
Q2

is lower semicontinuous on A. For p € COGRN), H € CbﬂRl),

Y,U
T

J(m) = f 2u[<pG,A >]dn(Y,U).

f
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By Lemma 3.2, with u fixed, the integrand is a bounded continuous

function on QZ. Hence J 1is continuous on ¥U. Let p = G
H = Hn be increasing sequences such that Dn(x) -1, Hn(z) > 2

z » o, Then J(7)

as

is the limit of the corresponding increasing

sequence jn(ﬂ), which implies that J(7) is lower semicontinuous

on A.
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5. Dynamics of At' We begin by imposing rather stringent
regularity conditions on the coefficients in (1.1), and by assuming
that the initial distribution wu has a density Py € CE(RN), Then A
turns out to have a density q(t,x) which obeys the Zakai

stochastic partial differential equation, as in case of nonlinear
filtering. However, it is more convenient to consider instead

P =q exp(-Yt-h), which obeys the partial differential equation
(5.4). Later in the section we drop the regularity assumptions,

and obtain the same equation in a weak form.

The regular case. We fix (Y,U) € Qz, and for the present assume

that U 1is continuous on [0,T]. We also assume for the present
that, for fixed Y,o,bo,bl,h are of class C;GRN). Given t > 0
and f € COGRN) consider the following 'backward" partial differ-

ential equation

(5.1) . Lveesv=0, 0<s<t,

v(t) = exp(Yt-h),

v
where we have written v(s),e(s}) for v(s,*),e(s,-) and LS is
defined by (3.5). The Cauchy problem (5.1) has the (unique)
probabilistic solution

vy,u t
(5.2) v(s,x) = Es; [f(Xt)exp(Yt'h(Xt))exp J e(U,Xe)dG],
s

. . . . v . .
where ¥§;U is the distribution measure of (wt’xt) satisfying

)
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dXt = gdt + odwt, s <t <T, with XS = x (in particular,

ploU - pYUy gy (3.8)

oX X

(5.3) v(0) = vy

Under our regularity conditions, v(s) € CmGRN) for 0 < s < t.

This follows from the smooth dependence on the initial state x of path- :

wise solutions X to dft = Pdt + Oth, Ys

Wiener process on some (ﬁ,{_éz},ﬁ). By essentially the same proof

= x, with Wt a fixed

as [10, p. 74} dv/ds is continuous and (5.1) holds. Moreover,
each partial derivative of any order of v in the variables
Xy».-.»X tends to 0 exponentially as |x] . For instance by
replacing X by X and EZ;U

ing with respect to X;, we get an estimate

by E = EF in (5.2), and differentiat-

. —— -

v, (s,x)| < C max E(x_|€.(T)])
| *i T os<tst ple 0

with Ei = BY/Bxi and Xg the indicator function of the event X
| Y£ € spt f. By [10, p.61],ﬁﬂ€i@)|p is bounded (independent of
\ ; T and x) for each p > 0. By taking p = 2 and using Cauchy-

Schwartz we get

le_(S,X)| < Cl[?(ft € spt f)]l/z.
i

- Al

Since P(Yt € B) = ¥E§U(Xt € B), the proof of Lemma 3.1b then shows

that vx'(s,x) »~ 0 exponentially as | x| . Similarly, higher
i

order derivatives of v tend to 0 exponentially as |x| -+, using the

et

.
. st

fact that partial derivatives of X of all orders with respect to

}' XqseeesXy have bounded expectations [10, p. 61].

Let us also consider the following initial value problem for

the equation adjoint to (5.1):

' P e e

o ",'.\x"..»., o
e - ‘\""i"_".t@{n‘w&"‘.“&




!
|
|
[
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d Vx
(5.4) EtB = Lip + e(t)p, t 20,
p(0) = py,

; where Py € CSGRN). The time reversal s = T - t changes (5.4)
! v
into a problem of the same form as (5.1), but with LS replaced by

another degenerate parabolic coperator L; and e(s) by another
e'(s). Therefore, (5.4) has a unique solution with p(t) € CwGRN)
and with all partial derivatives of any order in Xqse e Xy tending
to 0 exponentially as |x| ».

Let us write ( , ) for scalar product in LZGRN).

Integrations by parts imply (v(t),p(t)) = constant. In particular,

(v(t),p(t)) = (vg*Y,py).

If Py is the density of u, then we have from (3.9) since

v(t) = f exp(YEh)

o (5.5) f P, x)exp (Y -h(x))E(x)dx = <£,40 U5,
; R
Let
) (5.6) q(t,x) = p(t,x)exp(Yt°h(x)).

Y,Uu
) (of course, q = q 3 depends on the observation and control

ant

trajectories.) Then (5.5) implies that q(t) 1is the density of

the unnormalized conditional distribution measure A = AY’U

t t
under the above regularity assumptions. The partial differential




"
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equation (5.4) determines the dynamics of p(t), hence also of

q(t).

T S, — gy ror——— -

Equation (5.4) is a linear partial differential equation

in which the processes Y,U enter parametrically. 1In contrast,

the Zakai equation for q(t), see (5.8) below, is a stochastic
partial differential equation driven by the Y process. The
technique of replacing the Zakai equation by (5.4) is analogous

to the technique of Doss (7] and Sussmann {15] for reducing

certain finite dimensional I[to-sense stochastic differential
equations to ordinary differential equations depending parametri~ally
on a Wiener process. The same idea has been used in nonlinear
filtering by Liptser-Shiryaev [12], Clark [5], and others. See

Davis [6].

The general case. Let us return to the assumptions (Al]-(AS) on

O,bo,bl,h. We consider fixed (Y,U) 6522, and any distribution u

for XO. Let us rewrite (5.4) in a weak form. Define the measure
4 At by
(5.7) <o h.> = <g exp(-Y,-h),A.>, g€ C@®RY
: 8- § t 0T b :

‘ In the regular case, At
ty

' by g € CEGRN) and integrating by parts, we get

has density p(t). By multiplying (5.4)

. | f d _ v g N -~ (o) N
- (5.4") T <g A = <Log,A > 4 <e(tlg,A >, g€ C M.

-

This is the wecak form of (5.4). The initial data are now AO = |




.t
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Theorem 5.1. Equation (5.4') holds, for any (Y,U) € QZ, any

o
g € CC®Y) and initial distribution W for X,.

Proof. For g € CEGRN) (5.4') holds in the regular case. For fixed

0.1 @ N .
Y, take on,bn,bn,hn of class CbOR ), uniformly bounded and

tending uniformly to G,bo,bl,h as n +» o« with partial

derivatives © _,bf.,bi.,h uniformly bounded. Moreover, let U

X X.X.

i %1 i Ty n

tend to U almost everywhere on [0,T], Unt € %, and Mo tend

weakly to u, where Un is continuous on [0,T] and W has

Y U

. © N _ _ o
density Pho € COGR ). Let ﬁnx = an cgwherc the subscript n
means that U,bl,h are replaced by On’bn’hn’ 2 =0,1.

v v
. . Y, U .
Lemma A.1 implies that an - PX’ if X, > X as n s e, Let

n
f € COGRN). The same proof as for Lemma 3.1(a) implies that

t
von(x) = Exn(f(Xt)exp(Yt-h(Xt)exp JUen(s,XS)ds)

tends uniformly on any compact set to vg’U(x). Moreover, by
Lemma 3.1(b), von(x) » 0 as |x| » » uniformly with respect to n.
Let A be the corresponding unnormalized conditional distribution,

nt

with Ano = U - By (3.9)

<f’Ant> = “Von'tn”: <f’At> = Vo>

oYU, . .

where Vo T Voo Then <v0n,un> > <v0,u>. Since this is true
N .

for every £ € C,7), hie = Ay vaguely as n >« with |\Ant||

bounded. From (5.7), A + A, vaguely with llAntll bounded.

We rewrite (5.4') in the regular case in integrated form:

sn

t ~
>ds + J0<en(s)g,Asn>ds.

.

&
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OO v .
] For each g € COGRN), Lsng, en(s) are uniformly bounded and tend

v
to Lsg,e(s) uniformly on ]RN, for almost all s € [0,T].

By passing to the limit we get (5.4'),when g € CEGRN). Finally,

. 2 N o N v
we approximate g € CbGR ) by g, € COGR ) such that gn,LSgn
v
are uniformly bounded and tend to g,Lsg as n > o, uniformly on
compact subsets of ]RN. By passing to the limit in (5.4') we get

Theorem 5.1.

We do not have a uniqueness result for equation (5.4'), in
contrast with the nondegenerate case to be considered in §7. More-
over, in §7 we will be able to use results from the theory of
parabolic PDE concerning the continuous dependence of solutions

'i on the coefficients to get a stronger existence theorem for an

optimal stochastic control.

The Zakai equation. The unnormalized conditional distribution A

t
satisfies the following (Zakai) equation, written in a weak form.

o
: Recall that Y is a P, {Efi} -brownian motion for every

admissible control .

2
Theorem 5.2. For every f € CbGRN)
(5.8) d<f,At> = <Ltf,At>dt + <hf,At>-dYt.

Proof. Let V¥ (t,x) = f(x)exp(Yt-h(x)). Then

(),

<f,At>
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where as before we set VY (t) = ¥v(t,-). For fixed x, the Ito

differential rule implies that
1 2
dv = 5 ¥lh|"at + vh-ay.

Fiven t > 0, we partition [0,t] into m subintervals [tj_l,tj]
of length n Yt. Then

m
<f,A > - <f,A > =Y <b(t.),A, - A >
b ’ 0 . ? R .
t =1 T Tt
m ~
+ 3 <p(t.) - v(t. ;) A >
t.
m ] v -~
-1 [T tedguiey) « esvie, i as
j=1lt s ) J°s
-1
j
t.
m j ~
+ Zf T<wes)n A, K >ds
- t.
i=1 tj_1 ji-1
m tj ~
+ 1 f <b(s)h,A,  >-dv_.
j=1 tj-l j-1

(To justify the exchange of stochastic and Lebesgue integrals see

the

Note below.) For fixed Y,U,

|<¥(s)h,A_> - <b(s)h,A, >|
s tig

S ~ -

7 g m) B> + <e @) (s)n,g>ae]
t.
j-1

A
0
~
[92]
'
ct
t
(o
Nt
A
0O
E
—
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wherc ¢ depends on Y,U. Hence as m » « the last term tends in

[«

t ~

P.-probability to I <¢(s)h,As>-dYs. By using a similar estimate
0

for the integrand in the middle term, and elementary estimates for

the first term, we get

t v ~
USRS S RIO RO UORE RIOTINEN S

t ~
. J <W(s)h, A >-dy_.
. s> dY,

A straightforward calculation, using (3.2), (3.3), (3.5) gives
Y 1 2
exp(YS-h)LSf = st(s) + e(s)p(s) + > Y(s)|h|“.
Moreover, from (5.7)

<exp(Y<'h)LSf,Kq> = <Lsf,AS>

W (s)h, B> = <exp(Y -h)hf,A > = <hf,A_>.
Therefore

t t
<f,At> - <f,A0> = f <Lsf,AS>ds + I <hf,AS>'dYS.

0 0

This is the integrated form of (5.8), and proves Theorem 5.2.




-

Note. In the proof we have used

t.
j ~ ~
(5.9) I <w(s)h,A>-dYs = <5, A>
t.
j-1
where for brevity we now write Xt = A and where (pointwise
j-1
on lRN)
t. t.
J ‘ 1 J 2
¢ = f \P(s)h-dYS = P(t.) - w(t._l) - 5 f y(s) [h] dx.
t. J J “ e,
j-1 i-1

The functions &,¥(s)h are bounded and uniformly continuous on ]RN.

The bounds and moduli of continuity depend on f and ||Y|]|, but
not on s. For n =1,2,..., partition B_ = {|x| < n} into
Borel sets A?,...,A; of diameter < n 1 and choose x? € A?.

n
Then

j ~ ~

(5.10) f (3 (s, xHhxMHAADT-dY. = § cxMHaah.

‘. i i i i s i i i

j-1 '
For each (Y,U), the right side tends to <C,ﬂ> as n =+ «, The
sum in brackets on the left side tends to <¢(s)h,x> uniformly
with respect to s. Hence the stochastic integral converges in
probability to the left side of (5.9) as n » < [10, p. 11, IV].

This proves (5.9).

Theorem 5.3. For K =1,2,...,m >0

m m
(5.11) En(<(1+(x] 2,055 < caqav]x| D705k

e T T T

% wHiomh,

~ N




C depends on K,m, and t (but not on ® € ¥U).

For 0 <o < 1, let

m
£,(x) = (1+ x| %) exp[-a(1+]x]

2,1/2
172y,

Any easy calculation shows that f, € CéﬂRN) and |Lsfa|§ C,fy
for suitable C depending on m. The Zakai equation (5.8) and

1
Ito differential rule imply

K-1

| d<fy,h >N = [K<fy,A > <L, £y, >
;
[ '% + K(K-1)<£o, A > 2 <nry 0 > %) dt
{ " K<hfa,At>K‘1.dyt,
!
For a >0 let T = inf{t: ||At|| > a}. From (3.6) with f =1,
. llAtll = <1,A > is continuous in t and L?%}-adapted. Hence T

i ) is a stopping time. Let X, be the indicator function of the set
; {s < 1,}. Then
° K K

' En<f0t’AtATa> - <fa’U>

+ KE " <f A >N lep £ .0 >4
m Oxa a’’s stasftg?ds

o rt K-2 2
+ K(K-1)E_ [ X g<fq s >N 2l <hfy A 5] 2ds.
Jo

BRSSP Y

We have since f, > 0 and |Lgfy] < C

a lfa’




|<L_f

) ] a’As>|

tA

C1<fa,As>,

|<hfa’A5>|

1A

]| < £g,0,5,

2 K K

However, Xa<fa’As> < <fa’AsAr >. Gronwall's inequality then implies
a

; <f A >K< C<f >K
(4 o ? tATa - a’u »

C = exp[(KCy++ K(X-1) | In]%)e].

We let a » «© and then o » 0 to obtain (5.11).

t
2.2 K
E_<f_ ,A a> < <fy,u>0 + (KCp o+ K(K-1) [ [h|[“)E, [Oxa<fa’As> ds.

- e o
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6. Strict-sense admissible controls. We recall the notations

of §2.

Definition. We say that T € U is a strict-sense admissible control

if there exists u: 2, > Q5 such that u is (,QH(Y),,%H(U))

measurable for 0 < t < T, and for every .?%-measurable Yy >0

[ verman = [ voruonya,
2

Q QZ
where w is Wiener measure on (QZ,‘g%(Y)).

For any 7 € 9
_ oY
T(dY,dU) = m (dU)w(dY),

where Y is a regular conditional distribution for Tm. Strict-
sense admissible controls are those such that nY - éu(Y)’ W - a.s.,
where éu = Dirac measure on (QS,LQ%(U)) concentrat;d at u. By
admitting in §2 controls 7 € % which are not strict-sense, we

are in effect allowing the choice of Ut to depend on auxiliary
randomizations. Let

A° = {strict-sense admissible w}.

Corresponding to T € 4% there is a causal functionmal Y such
that Ut = Y(t,Y) Lebesgue * T-almost everywhere [16]). Causal is

in the sense that Yg = Y; for 0 < s <t implies Y(t,Y) = y(t,Y')

for Y,Y' € C([O,T]jRM). (We do not use this result in this paper.)

It can be shown that %% is dense in %. We shall not prove this

here. However, we shall show that the infimum of J(7) on s

ke
—~ \m:li :J‘é'.' nt--'#

»
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is the same as on 9 (Theorem 6.1). For this purpose we consider

approximations by piecewise constant controls.

For m = 1,2,... let us partition [0,T] into m equal
subintervals [ti’l'ri]' tj = jb, & = m-]T. Let

= Q. = h . . j = .

QSm (U € Qg Ut constant on [tJ_l,tJ), j 1, ,m}

On Q2 weak and strong convergence of a sequence are both ecquivalent

to pointwise convergence on each subinterval (ri_],ti). Define
. ( . . - .
d o0 Qg > Qo by ¢ (U) = U, where
~
0, 0 f t ‘f I
I =<
mt t.
-1 ]
A J N ds, t, < t t.
s i+1
t. -
. j-1

As m » =, ¢m(U) + U in Lz-norm, for every U € Q%' Let

= 0, % sz, and

3t
39

- . m(gly =
AU, = ™€ A n(o ) = 1},

[f me ﬂm, te [t.

’tj+1)’ then U is independent of the

] t
increments Y - Y. for tj < s < r under .
,
We call V¥ (Y,U) strongly continuous on 2 ° = @, % Q. if

2 3
¥ is continuous when Q4 has the Lz-norm topology rather than

the weak topology. We also denote by ¢
i bi
Q" - Qm’ such that (Y,U) - (Y,¢m(U)).

t

m the mapping from




B

Lemma 6.1. Let V¥ be bounded and strongly continuous on Q°. Let

moo= ®m1L Then

nmf v (Y,U)dn =f v (Y,u)dr.
m>e Qﬁ " HZ

Proof. By definition

| poanan, = [ voe uar,

o Q

Since ®m(U) - U strongly, the lemma follows from the dominated
convergence theoren,

In particular, we may take in Lemma 6.1 any ¥ bounded

5
and continuous on °, where Q4 has the weak topology. Thus:
Corollary v.1. As m » =, ¢, > T, for cvery "€ 9.
. S
Let Hm %m n 9
2 .
Lemma 6.2. Let ¢ be bounded on @ and continuous on any
= : T
compact subset of w;. Then

We leave the proof of this lemma, which depends on standard
but tedious arguments, to the Appendix.

In addition to (AI)-(AJ) in §2 we assunmce (,\é’) i

We use the "scparated" formula (4.2) for J(n).
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Theorem 6.1. inf J(m) = inf J(7).
A L

Proof. Since W < A, we have <

Let o € COGRN) with
0 <p <1, HE CbGRl), and

" | |
v(Y,) = J Hleer (0 A Vs ae « npeee, Al Usy,
0 oot I

Wy = f pdm,
2
QA-

By Lemma 3.2

oy ¥

satisfies the hypotheses of both lLemmas 6.1

and 6.2. Hence, for every € > 0, and T €A there exist m and
] <

I | such that
1 m

J(n

) J(n) o+ e,

Theretfore,

" .
inf (") = inf J(T).
- \)
A !
Now take - such that Pn(x) =1 for x| <n, Hn(z) =

= min(z,n),
and the corresponding Jn("). To complete the proof it suffices to
1 how t] ,
< ; J il [ n
. 10w that p Fem)

uniformly on 9% as n » =

. Tor brevity, we
oYL .
write A = A . We have from (A!), 94
t t 5 ’
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l where Bn = {<(l+lx{m,At> > C-ln}. Let 2 >m as in (Aé) and
’ p = nle. From Holder's inequality
: 1/p' D 1/p
1 <-e s xMone || 1an, [ astamPan,
R

[x]>n

A

c]ﬂg/p' f (1+lx|R)dl\t Up+l/p*
RN

-1

Since p-l + (p") = 1 and (p')-l

£ =2 - m,

o

: . -(2-m) 2 2
Ln<(1-pn)(l+|x|%,At> < ¢yn ( )En<1+|x| >

| By Theorem 5.3 the expectation on the right side is finite. By

Cauchy-Schwart:
[B <1+|x[m,At>d" < n(Bn)l/Z[ﬁn< l+|x|m,At>2]l/2.
n

Moreover,
. ..-le m
(R < Cn fn<1+|x| A

Bv nsing again Theorem 5.3, the right side of (*) is bounded above

hv (,n‘B, where R = min(;,9-m). A similar estimate holds if

i I(~,Htl is replaced by G(+). We then have, for all =1 € A,




-

0 < J(m) - J_(7) < ¢ (T+1)n" P,

g T TN — -

as required. This proves Theorem 6.1.

Extreme points of 9% . Under the hypotheses of the existence theorem

4.1 or of Theorem 7.2 below, J(7) 1s linear and lower semicontinuous
on the compact, convex set . Hence, J(7) has a mimimum at some

extreme point of ¥U. Let

A€ = {extreme points of A},

e

It can be shown that %° < 4 However, the following counter-

example, due essentially to Varadhan, shows that P

An example of Cirelson [3] provides a bounded causal drift

coefficient v (t,n), such that the stochastic differential equation

dn, = a(t,n)dt + dy,

with Y a Wiener process, Ny = Y0 = 0 has no strong solution.

However, the Carmeron-Martin-Girsanov formula gives a weak solution,

uniquely determining the joint distribution measure 7' of (Y,n)

1

on C([0,T];R®). Let % = [-1,1], and U, = ¢ N (n

1

t) where

$(u) = (1-u¥) lu, -1 < uw <10 Let o(v,U) = (Y,m), n_=¢@U). Then
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T =4 "T' js in Y, but not in %° since no strong solution
exists. In fact, T € . To see this, suppose that

T = AT -A)T
Then, for i = 1,2

0 <A <1, 7 €9 for i=1,2. Let 7} = om..

t
"i(”t = Joa(s,n)ds + Yt, 0 <t <T) =1.
Hence, ﬂi =T, ﬂi = T, i = 1,2, which implies T € %A,

The following characterization [17] of A€ was pointed out
to the authors by J-M. Bismut: 7 € A if and only if every

2
bounded T, {‘%E}-martingale M, has the form

with ¢ a constant and ft some integrable predicatable process.

The authors wish to thank V.E. Benes, J-M. Bismut, and

S.R.S. Varadhan for helpful comments in connection with the present

section 6.




7. The nondcgenerate case. Let us now assume, instead of (Al)

in §2;

(A}) o 1is a bounded, continuous N X N matrix-valued

1
function on ]RN+M

¢, ®M  for 1= 1,...,N.

with bounded inverse. Moreover, 80/8xi

We also assume;

(AG) The distribution u of XO has a density
2 N
Py € LT@M).

Let us show that, for fixed (Y,U) € QZ, the forward

equation (5.4) is still correct, if suitably interpreted in the
L2 theory of parabolic partial differential equations.

? Consider the Sobolev space

il = v e L2@mY): W e ey, i=1,...,N,
i
and HL = (Hl)'. Let it be the bounded linear operator
from H' to H-l, such that for all p, v € it
N N
' 7 I | op  adv p v
‘ <LSP,V> = > Z_ J aii TOET dx + '2 J ;P 3% dx
1,j=1 RN - i J i=1 RN i
N
+%Y\- y J a éll——ip—vdx,
S 1) 9x. 9x
i,j=1 lRN j i

i . ‘ where <> denotes here pairing of lll and H'1 and
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~ 1 N9y, 1 N oh
a;(s,x) = b, (x,Y,,U) - 3 j£1 axj (x,Yg) - 5 Y, Jz alJ(x,Ys)gfg.

In the '"regular case'" integrations by parts show that equation (5.4)

is equivalent to

(7.1) ®-fprep, t>0

p(0) = p,y, where

’

e(s,x) = 7 (a¥_*Vh,Y_-vh) - b-(Y_-vh) - L |n|?

Ja. .
b = - 1)
bi(s,x) bi(x,Ys,US) X (x,Ys).

Do) =

N
)
j=

1

The initial value problem has, for fixed Y,U, a unique solution

[1]
p € Locro,1138h 0 ccro, 1LY .

Theorem 7.1. q(t) = p(t)exp(Yt'h) is the density of the unnormalized

conditional distribution A

£

Proof. From (5.6), this is true in the regular case. Following

the proof of Theorem 5.1, we make approximations On,bg,b;,hn, such

0

that on,aon/axi,bn,bi,hn are uniformly bounded and tend

uniformly to 0,30/3xi,...,h as n * > with

®
a = 00 > al(e >0) for all n. Un is continuous and tends

to U strongly in Lz([O,T];‘%), while o has density Pro evCOGRN)

2
tending to Py Strongly in L GRN). The density pn(t) of the
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corresponding Knt satisfies

dp, =~ ~

at Lntpn ®nPn

P,(0) =p.,»
where int’én are obtained by replacing o,...,U above by
on,...,Un..

Rewrite Anpn = ann + e P> and Ap = Lp + ep. Then:

d
) =A@+ g
p(0) -p (0) =1y - ppg
where g, = (A-An)p.

It follows from the above hypotheses that there exists ¢,

independent of n, such that for all v € Hl:

>

2
<ALV, V> o+ clv]T,

L")

Ve

2
vl
it

Consequently, by standard PDE arguments, see [1], there exist

c' and c¢" such that

2 2
sup|p(t) - ()% ol 2 g,

S C' p - + CH
Octs< Ny %o .

2
g 1
® 20 rn

One easily checks that g -~ 0 in LZ(O,T;H-I).

Finally, p_(t) » p(t) in L°®N). Then




a1

lim <f,Ant> = lim [ f exp(Yt-h)pndx = J f exp(Yt-h)pdx
e e N N
R R

for any f € COGRN). However, the proof of Theorem 5.1 showed
that <f,Ant> > <f’At>° Thus, q = p exp(Yt-h) is the density of

At’ which is Theorem 7.1.

Y,U

Let us write p =p to emphasize the dependence on Y,U

of the solution to the initial value problem (7.1). From (4.2) and

Theorem 7.1 we can rewrite the criterion to be minimized as

(7.2) I - | [[Z
QZ

J F(x,U,) pY’U(t,x)exp(Yt'h(x))dxdt
mN

R f Nc(x)pY’U(T,x)exp(YT-h(x))dx]d"(Y,U).
R

LLet us suppose:

(Ag) Condition (AS) in §4 holds, and F(x,*) 1is convex

on % for all x EIRN.

Theorem 7.2. There exists 7 € ¥ such that J(7%) < J(m) for

all mTe U.

Let us first prove two lemmas.

LLemma 7.1. For every p € COGRN), p >0, and (Y,U) € Qz, the

function VY (V) defined by

T
Y (V) = f f p(x)F(x,Vt)pY’U(t,x)cxp[Yt°h(x)]dxdt
0N

™

Tl

p— ;‘,’\"vwé e .'_(d
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is lower-semicontinuous on

3

Proof: Since Y (V) 1is convex from (Aé), it suffices to show

2
that it is continuous on L (0,T;%) endowed with the strong
topology.

n . 2 n'
Let V' >V in L%(0,T; %) strongly. Let V be

t

a subsequence such that VE converges for almost all t. Then
1

\P(Vn ) > ¥(V). Consequently, any convergent subsequence of

{W(v™} has Y(V) as its limit. But ¥ is uniformly bounded
on LZ(O,T;QQ). It follows that W(Vn) + Y (V).

Lemma 7.2. Let (Yn,Un) + (Y,U) in Qz. Denote p" =
Y_,U .
p " n, p=p

Then for every D bounded open subset of

RN with smooth boundary,

(@) p™(1) » p(T) in L%(D) weakly.
() "> p in L%((0,T) x D) strongly.

Proof. Equation (7.1) can be rewritten in the form:

d -
Je *t AP * UAp = 0
(7.3)
p(0) = 0
where for all p, v € Hl,
' R s »”";

RACEE XU

c ke g = - - R -- Q\.,.“.ﬁ"?-'/‘”.;r
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N N
1 op v v _
AgPrv> = 7 Z_ f 3ij 3x, ox. dx + E *iP 3x; dX
i,j=1 N i j i=1 i
R
N ap
-3 [ Yl AV dx + f Spv dx.
i=1 ]RN i ]RN
N Y%
<A1p,v> = - J B.p X dx + [ gpv dx
i=1 J_N b X N
R R
with
N 2da.. N
_ .0 1 i 1 . dh(x)
@ (t,x) = -bi(x,Y,) + 5 '21 5;71 (x,Y) + 5 Y, .glaij(x’Yt)Bx-
= J J= J
B |
B; (t,x) = bi(x,Y,)
N
1. dh
Yi(t,x) =5 Xt jzlaij(x’Yt) X (x)
st )=—1(Y-VhY-Vh)+Y°Igah ) b0x,Y.) -
X 7 BNy t o 0x; N0
N da..
o1 ij 21 2
> _E 5% (X,Yt)] 5 [h[“(x)
=1 77
0(t,x) = ¥,e ) blex,v,) B )

all these coefficients being continuous and bounded functions of
(t’Yt)'
It follows from standard arguments, after multiplication of

(7.3) by p and making use of (Aé), that there exists a unique

constant K (depending only on suplYtI) such that:
t




(7.4)  |p(t)[? + 5 ftwp(s)l2 ds < [pal% + K ftlp(s)lz ds.
LZGRN) 72 0 (LZGRN))N - 0 0 LZGRN)

Let now (Yn,Un) + (Y,U) in QZ. Then sup Y? is uniformly

t n
bounded, and it follows from (7.4) and (7.3) that (", §0—,p™(T))
remains in a bounded subset of LZ(O,T;Hl) x LZ(O,T;H'l) x LZGRN).

We can then extract a subsequence, still denoted P", such that:
(pn,%%—-,pn(T)) + (p,q,r) weakly, and it is easy to check that
&

Q= 35 » T = p(T). Then p € LZ(O,T;Hl). If we still denote by p"

and p the restriction of p® and D to [0,T] x D, we have:
. n — . 2 Ll
(1) p »p in L°(0,T;H (D)) weakly
..y dp" L dp . 2 -1
(ii) a%‘ a% in L°(0,T;H (D)) weakly
(iii) p(T) » p(T) in L%(D) weakly

where D 1is open, bounded and with smooth boundary.
Since D 1is bounded, the injection from Hl(D) into LZ(D)

is compact, and it follows from (i) and (ii) by a compactness Lemma

[11] that
(iv) p"™ = p in L?([0,T] x D) strongly.

It remains to show that p = p. Choose any ¢ € CEGRI), and

v € CE(D). Multiply (7.3)n by ¢v, and integrate by parts:

- -m;;ﬁﬁﬁ%;a;;é.‘
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T
O (T) (P (T),v) + IO¢(t)<pn, (Ag)*v>dt +

T
o[ e@r®, ap e 60 (g

T
+ JO g% (pn,v)dt

where ( , ) denotes the inner product in LZGRN).
n.*® * ) 2 -1
Now, (AO) v AOV in L (0,T;H “(D)) strongly and
(A *v> A3y in L2([0,T] x D) strongly. It follows from (i),
(iii) and (iv) that we can take the limit in the above equality.

Since D,v and ¢ are arbitrary, p = p, the unique solution of (7.3).

Proof of Theorem 7.2. As in Theorem 4.1, it suffices to show that

J(T) 1is lower semi-continuous on A, and this will be true if

for all p € C,@®N), ¢ > 0, and HE C, R') montone, the following

functional is lower semi-continuous on A

{

T
em = [ H J [ 0 (OF (U exp(Y, he0dp Ve, x)dxdt +

0
> L Y

Y,U
v [ ea6mIe (R (TR T,
N
R

A sufficient condition for J to be l.s.c. (lower semi-continuous) on U

is that the integrand be 1.s.c. on QZ.

Since H 1is continuous and monotone, it suffices to show that

the following functional is 1l.s.c. on QZ:
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Tr
My,v) = IJ N P OOEG,U exp (Y rh()n Ve, x)dxdt +
0/R

. LRND(X)G(x)exp(YT'h(x))pY’U(T,x)dx.

Let now (Yn,Un) be a sequence such that (Yn,Un) - (Y,U)

in Qz, and consider (with the notations of Lemma 7.2):

T

mat,uh - @, [

f ND[F(Un) - F(U)]exp(th)p dxdt +
0‘RR

T
+ J J NDF(Un)[exp(YZJQpn - exp(Yt-hhﬂdxdt +
0‘R

+ LRNDG[exp(Y¥Jﬂpn(T) - exp(YT40p(T)]dx.

When n + «, it follows from Lemma 7.1 that 1im inf of the first

term in the right hand side is > 0. The two other terms tend to zero

from Lemma 7.2. Then @(Yn,Un) > @(Y,U)-
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In this Appendix we prove two results used in the paper. The
first result concerns the continuous dependence on the coefficients
l and initial state of solutions to martingale problems associated

with stochastic differential equations of the form

0 1 .
(A.1) dXt (B (t,Xt) + B8 (t’xt)Ut)dt + W(t,Xt)th, 0 <t <«<T

XO = X

Let us write for brevity Xé = (Wt,Xt), and consider the 'canonical"
, sample space Ql, {%i} in the notation of §2., For f € CSGRD+N) let
: t
! = f£(Y'Y - f(yY'y - | 1*'fF(Y"?
| (A.2) Mf(t) f(Xt) f(Xé) JOLSf(XS)dS,
| Ll 'y

(A.3) L!f=5Af + 5 a . (t,x)f + Y., (t,x)}f

t 2w 2 i,j=1 ij xixj i=1 k=1 ikt X Wy

——

i o (8%e,x) + BL(e, 00UV 1

where Awf(w,x) is the Laplacean with respect to w,Vx the pradient
in x, and o = YYy', The martingale problem is to find a probability

1 . .
’ measure Px on {f;T} such that PX(XO = (0,x)) = 1 and Mf(t) is a

P f%i} martingale for every f € CéGRD+N).

<’ See [14, Ch. 6].

Let us call a function B of class j!k if B 1is Borel

measurable on [0,T] x RN, |g(t,x)| < K, and g(t,+) is Lipschitz

- a1

i with constant K. If BO,Bl,y are of class L/k and U ¢ LZ([O,T];Qk),

then the Ito conditions hold in (A.1). This implies existence and
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1%
uniqueness pathwise of solutions to (A1), and conscquently existence

and uniqueness of the solution P\ to the martingale probtlem,

We write Pn\ for the solution to the martingale problem
if g4 .0 slaced by EL oy U mo= 1,0 U
‘ are replace ’ , = 1,0,..., - 0,1
B, tre replaced by n Uy i
¢ _ N
Lemma A.1.  Assume that Fn"n are_of class 7y and tend to 0y
. . . \ .
as n » « , uniformly on compact subsets of [0, ~ R [+ = 0],

Morcover, assume that ”n » U weakly in 170[o ] 4, v, toxooas

n = ., Then P__ -+ P .
—_ nx X

Proof. The sequence Fn = an of probabilityv measures is tight

{1d, ¢h. o 1. Hence, anv s‘lll)\'(w;‘lu“u’v has o turther wubeie Juence ton finy
to a limit PO. I't suffices to show that PO 15 4 solution to the
martingale problem. Uniqueness then implies P“ = Vx. Clearly,

'

Mnf’lnt Iin (A 2), "AL3) when

PO(Xé = (0,x)) = 1. Let us write

L . .
Bi,y,[l are replaced by Pn')lx’”n' lLet us show that for fixed
2 Y+ N
f € LOGRI+N) and compact T < ul,

t t
(A1) lim fOLﬁSF(X;)dS = JOL;f(X;)dS

n-+o

uniformly on [0,T] * I'. Since Mnf(t) is a Pn,{ ¥¢} martingale

and Pn > PO (n in a subscquence) (A.4) will imply that Mf(t)

is a PO,{gi} martingale. Now

e L 1 .1 . 1 )
Lﬁsf - Lsf = (Bn 8 1)U fo + B (”ns US)fo + Bn(s,x),

ns

where On + 0 uniformly on compact subsets of [0,T] ~ RrY, Since

Unq is bounded (see (Ad)’ §2) and B; - B1 uniformly on
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14
ompact o sets,

t
R 1 . ] o ~ ct -

{ . : - [ .7 (X s = 0
lim [Lnxs,\ ) g (s,\s)]UnS X { S)tﬁ

nee 0 s
rt
Tim ¢ = (s,X )ds = 0
n 8
n s« (]

unitormly tor 0 < t < 1, X' €17, To obtain (A.4) 1t remains to
<how that
A Tan A 'l < X (v S Y- (X')ds =0
] P R “ ns “ J (,S(.

nee
unitormiv o on [0, T] ~ ', Now ﬁl(s.-) and Vf are bounded and
ipschits, with some constant K. Morcover, functions X' € T are

uni tormly bounded and cquicontinuous. Therelore, given ¢ > 0 the

imtecral in (A1) can be approximated to within &, uniformly with

respect to XU and n o= 1,2,..., by a finite sum
t
T 1 .
cNL M ‘ S x|t AT e Ex DY ds
j i ns s i
oot
11
Cy o | - N R ¢ - T , ] Ly . iy R
wheto } t ) C tm I' and X[ooeea Xy are suitably
cho-on. f The ti"\i depend on ¢ and Iy Since Un - U

weak v, Vo) tends to 0 as n s> «, This proves Lemma A.1l.

Note, In this paper we appeal to Lemma ALl three times. In

lerma 201 we tahke
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]

v (t,x) = o(x,Y ), y(t,x) =

L 2

B (t,x) = POy ), 8h (e, -
where IIYn-YII = 0 as n - o (sup norm).
Py, = Pi’U. In the proof of Lemma 3.1 we use

50

o(t,Yt)

b‘(x,vt)

In that case,

instead of b2

.. Ve .
the modified drift coefficient b corresponding to the change of

V 14
probability measures (3.4). Then P = P;’U

and Lg 1is replaced

\'
by Lo in (3.5). Finally, we use Lemma A.1in the proof of

Theorem 5.1 as indicated there.

In 86 we postponed the proof of Lemma 6.2,

Proof of Lemma 6.2. Since %° c ﬂm it suffices to show that,

m

for every 7 ¢ %m and € > 0, there exists

(#) J pdny < J pdm o+ €,
Qz Qz

s
"1 € %m such that

Let us fix A and consder different T = mA, m = 1,2,... . We prove

(#) by induction on m. For m = 1, each admissible control ™,

with Ut constant on [0,A) w-almost surely, corresponds to a

product measure: T = w X o where w 1is Wiener measure on

QZI = C([0,A]); RM) and @ is a probability measure on %.

Let u® minimize J V(Y,u)dw(Y) on %. The control T such

Q
21
that U = u®, 0 <t <A with probability 1

J vdr, = J vY,u¥)dw(Y),
2 2

Q QZI

1

1

satisfies
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where Q7 = & X Q.. We then have

o
[Q¥]
[y
[#2]

f vdn = f f VY, u)dw(Y)de(u) > | pdr,

2 % o, 2
: 21 2

as required.

Now suppose that (#) has been proved when m 1is replaced by

m-1 (i.e., T by T - A). Let (Y,U) denote the restriction of

(Y,U) to [0,T-A], and ﬁz the space of such (Y,U). Let T be

=2 . .. .
the measure on @ induced from @ by restriction. We write

2
similarly Q&,Qz,w when T 1is replaced by T - A. Let

Ut - Um on [T_A’T)’ where Um € %. Let Ymt = Yt - Yt‘T+A on

[T-4,T], and W Wiener measure on Cm = C([T-A,T]ﬂRM). We can
identify Y with (Y,Ym) and piecewise constant U with (ﬁ,Um).

Let

Y(Y,U,u) = JC ¢(Y,Ym,U,u)dwm(Ym),

m
t(Y,U0) = min v(Y,U,u).
U

: : : 2
Since ¥ is bounded and continuous on any compact subset of Qs

¢ is bounded and continuous on any compact subset of @

3 o

Consider any 7 € %m, with corres<ponding T determined by

restriction. By induction there cexists« strict-sense

771

admissible, such that Ut is constant on [ti-l’ti)’ i=1,...,m-1,

fi-nlmost surely, and




:
?
|
{
4
i

-t

we define ¢: 32 + % as follows. let K c @% be compact with

2

T@%-K) ¢ T @20 < e3l vl D

where || || = sup norm. Choose a partition K = Ky v
1 ('}Z bva T
with each Ki € “9T—A and (Yi’Ui) € Ki such that
— — L = == € - T —
S(Y;,0) < &(Y,0) + i Y(Y,U,u) < v(Y;,U ,u) +

for all (Y,U) € Ki» u € %. let u. € Zminimize
i

i=1,...,n. Let u,€ % be arbitrary; and take

Y.0) €
(Y,0) € K,

u,, (V,0) € at - k.

The control T € %; is defined by taking Um = o(Y

surely, and ﬁl the restriction of T, . Then

1

f van f Y(V,0,0 (Y,0))dn,

Q% K

< j gdnl + = < f zcdn + €

On the other hand,

o™

v(Y;,U;,u) on

b

]

)

ﬂl—almost
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[a®)

7 .
Q R 7

s [, man(r,m.

R
QZ

This gives (#), and hence Lemma 6.Z2.

J e j YT, 0w an P (u)di (7,09




(1]

(2)

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

54

REFERENCES

A. Bensoussan and J.L. Lions, Application des inéquations
variationnelles en contr8le stochastique, Dunod, 1978.

P. Billingsley, Convergence of Probability Measures, Wiley,
1968.

B.S. Cirelson, An example of a stochastic differential

equation not possessing a strong solution, Thcory Probability

Appl. 20(1975) 427-430.

N. Christopeit, Existence of optimal stochastic controls
under partial observation, Z. Warscheinlichkeitstheorie
verw. Gebiete, 51(1980) 201-213.

J.M.C. Clark, The design of robust approximations to the
stochastic differential equations of nonlinear filtering,
in Communicatons Systems and Random Process Theory,

J. Skwirzynski ed., Sijthoff and Noordhoff, 1978.

M.H.A. Davis, On a multiplicative functional transformation
arising in nonlinear filtering theory, to appear.

lI. Doss, Liens entre equations differentielles stochastiques
et ordinaires, Ann. Inst. H. Poinc;re, 13(1977) 99-125.
W.H. Fleming, Measure-valued processes in the control of
partially-observable stochastic systems, Applied Math. and
Optimiz.

W.H. Fleming and M. Nisio, On the existence of optimal
stochastic controls, J. Math. and Mech. 15(1966) 777-794.

I.I. Gikhman and A.V. Skorokhod, Stochastic Differential

Equations, Springer-Verlag 1972.




.
0
¢

&

(11]

(12]

[13]

[14]

[15]

[16]

[17]

v e - 1 ~11!
— e e e P - U R N P, L) ~ i

55

J.L. Lions, Quelques méthodes de résolution des problZmes

aux limits nonlineaire, Dunod, 1969.

R.S. Liptser and A.N. Shiryaev, Statistics of Random

Processes I, Springer-Verlag 1977 (transl. from Russian).

E. Pardoux, Stochastic partial differential equations and
filtering of diffusion processes, Stochastics,

D.W. Stroock and S.R.S. Varadhan, Multidimensional Diffusion
Processes, Springer-Verlag, 1979.

H.J. Sussmann, On the gap between deterministic and stochastic
ordinary differential equations, Ann. Prob. 6(1978) 19-41.

M.P. Yershov, Nonanticipating solutions of stochastic
cquations, Proc. 3rd Japan-USSR Symposium on Probability Theory,
Lecture Notes in Math. 550, Springer-Verlag, 1976.

M. Yor, Sur 1'étude des martingales continues extrémales,

Stochastics 2(1979) 191-196.







